Thermal Properties of Matter 1 TEMPERATURE 5 CHANGE OF STATE **HEAT TRANSFER MODES** 9 RADIATION Change of state from solid to liquid is called melting or fusion. Temperature is a relative measure of hotness or coldness. O This heat transfer mechanism needs no medium. Heat transfer takes place between system and surrounding medium O Change of state from liquid to vapour is called vaporisation Energy transferred by waves is called radiant energy. O The temperature at which the liquid and vapour states of substance coexist is Heat transferred from sun to earth is by radiation. until they are at same temperature. 7 CONDUCTION called its Boiling point. O Radiations emitted by hot bodies are called thermal Measure of temperature is obtained using a thermometer. Boiling point increases with increase in pressure and vice versa. O Some properties of material change with temperature to be used O It is a mechanism of heat transfer as basis of constructing thermometer. O The change from solid state to vapour state without passing through the between adjacent parts of a body due For standard scale a fixed reference point is taken. liquid state is called sublimation and substance is said to sublime. to temperature difference. 8 CONVECTION A relationship for conversion between Fahrenheit and Celsius Latent heat At steady state, the temperature of bar, temperature scale is Amount of heat transferred during change of state of substance is called its through which heat is flowing, decreases $t_F - 32$ t_c latent heat In convection mode heat transfer by actual motion of matter occurs. with distance, and heat starts flowing at Convection occurs in fluids only. 180 - 100 a constant rate. $I_{\cdot} = \frac{\Delta Q}{Jkg} Jkg^{-1}$ O Two types of convections are The rate of flow of heat O A temperature -273.15°C is designated as absolute zero. This is 1. Natural convection foundation of Kelvin temperature scale. 2. Forced convection Size of unit of Kelvin and Celsius temperature scales is the same. L depends on pressure. O Trade winds is example of natural convection in which gravity Solid-liquid state change → Latent heat of fusion (L) Relation between scales is plays an important role. O Liquid-gas state change Latent heat of vaporisation (L_v) $T_{\kappa} = t_{c} + 273.15$ In forced convection material is forced to move by a pump. Human circulatory system, cooling system of automobile engine are forced convection method. T_H = Hot end Temperature $T_C = Cold$ end Temperature L = Length of rod2 HEAT A = Cross - section of rod K is called thermal conductivity of material O A form of energy transferred between two or more systems by Greater value of K for a material. virtue of temperature difference. more rapidly will it conduct heat. Its Thermal Expansion SI units are Wm-1K-1 A change in temperature of a body causes change in its dimensions. Thermal Three types of expansion **Properties of** 1. Linear Expansion Matter LAWS OF RADIATION → 11 STEFAN – BOLTZMANN'S LAW 2. Area Expansion For a black body which is perfect radiator energy emitted per unit time is given as 4 HEAT CAPACITY 10 WIEN'S DISPLACEMENT LAW $H = A \sigma T^A$ 6 TRIPLE POINT A is area, T is absolute temperature of body, σ is called The change in temperature of a substance, when a given Wavelength for which radiation energy For anisotropic solid = $\alpha_V = \alpha_{l_1} + \alpha_{l_2}$ Stefan Boltzmann's constant quantity of heat is absorbed or rejected is characterised by a is maximum decreases with increasing The temperature and pressure at which $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$ quantity called heat capacity. 3. Volume Expansion temperature. the fusion curve, the vaporisation curve O But if a body is surrounded by surroundings at and the sublimation curve meet and all temperature For perfect radiator net rate of heat $\lambda_m T = constant$ the three phases of a substance coexist ΔT radiated Value of constant (Wien's constant) is 2.9 × $H = \sigma A (T^4 - T_s^4)$ 10⁻³ m K. Specific heat capacity α_V is constant only at high temperature AO → Fusion curve O This law is used to measure surface This is unique value of heat absorbed or given off, to change O Pyrex glass and invar has low O For body with emissivity e modified relation is BO → Sublimation curve temperature of celestial bodies like Alcohol has high volume expansion coefficient than mercury. unit mass of it by one unit temperature change. CO → Vaporisation curve $H = e \sigma A (T^4 - T_c^4)$ $0 < e \le 1$ stars, moon and sun. $\alpha_V = \frac{1}{T}$ for ideal gases $S = 1 \Delta Q$ $m - m \Delta T$ Pressure-temperature phase diagrams for water $(\alpha_V)_{\text{gases}} > (\alpha_V)_{\text{liquid}} > (\alpha_V)_{\text{solids}}$ 12 NEWTON'S LAW OF COOLING When a solid rod has its ends rigidly fixed, it results in thermal Molar specific heat stress in material which is proportional to temperature change. If the amount of substance is specified in terms of moles we define heat capacity per mole Thermal Stress = $Y \cdot \alpha_i \cdot \Delta T$ $C = \frac{S}{\mu} = \frac{1}{\mu} \left(\frac{\Delta Q}{\Delta T} \right) \text{ Jmol}^{-1} \text{K}^{-1}$ 13 GREENHOUSE EFFECT Rate of heat loss of a body For gases two molar specific heat capacities is directly proportional to The absorption of infrared waves by greenhouse Change in temperature $= k\Delta T$ difference of temperature Average gases such as CO2, methane (CH4) nitrous dude of body and surroundings. (N2O) chloroflurocarbons (CFrCIr) and ozone (O3). Molar specific heat Molar specific heat O This law holds for O Heat lost by a part at higher temperature is equal to $\Delta T = (T_{ov} - T_{s})$ Heating of atmosphere → More energy to earth capacity at constant capacity at constant heat gained by the part at lower temperature. small temperature → Warmer surface. Without Greenhouse effect pressure volume Calorimetry means measurement of heat. difference only. $\log_e(T_2 - T_1) = -kt + C$ temperature of earth would have been -18°C A device in which heat measurement can be done is called a calorimeter. $C_P - C_V = R$ (for ideal gases)

Thermal Properties of Matter 1 TEMPERATURE 5 CHANGE OF STATE **HEAT TRANSFER MODES** 9 RADIATION Change of state from solid to liquid is called melting or fusion. Temperature is a relative measure of hotness or coldness. O This heat transfer mechanism needs no medium. Heat transfer takes place between system and surrounding medium O Change of state from liquid to vapour is called vaporisation Energy transferred by waves is called radiant energy. O The temperature at which the liquid and vapour states of substance coexist is Heat transferred from sun to earth is by radiation. until they are at same temperature. 7 CONDUCTION called its Boiling point. O Radiations emitted by hot bodies are called thermal Measure of temperature is obtained using a thermometer. Boiling point increases with increase in pressure and vice versa. O Some properties of material change with temperature to be used O It is a mechanism of heat transfer as basis of constructing thermometer. O The change from solid state to vapour state without passing through the between adjacent parts of a body due For standard scale a fixed reference point is taken. liquid state is called sublimation and substance is said to sublime. to temperature difference. 8 CONVECTION A relationship for conversion between Fahrenheit and Celsius Latent heat At steady state, the temperature of bar, temperature scale is Amount of heat transferred during change of state of substance is called its through which heat is flowing, decreases $t_F - 32$ t_c latent heat In convection mode heat transfer by actual motion of matter occurs. with distance, and heat starts flowing at Convection occurs in fluids only. 180 - 100 a constant rate. O Two types of convections are The rate of flow of heat O A temperature -273.15°C is designated as absolute zero. This is 1. Natural convection foundation of Kelvin temperature scale. 2. Forced convection Size of unit of Kelvin and Celsius temperature scales is the same. L depends on pressure. O Trade winds is example of natural convection in which gravity Solid-liquid state change → Latent heat of fusion (L) Relation between scales is plays an important role. O Liquid-gas state change Latent heat of vaporisation (L_v) $T_{\kappa} = t_{c} + 273.15$ In forced convection material is forced to move by a pump. Human circulatory system, cooling system of automobile engine are forced convection method. TH = Hot end Temperature T_C = Cold end Temperature L = Length of rod 2 HEAT A = Cross - section of rod K is called thermal conductivity of material O A form of energy transferred between two or more systems by Greater value of K for a material. virtue of temperature difference. more rapidly will it conduct heat. Its Thermal Expansion SI units are Wm-1K-1 A change in temperature of a body causes change in its dimensions. Thermal Three types of expansion **Properties of** 1. Linear Expansion Matter LAWS OF RADIATION → 11 STEFAN – BOLTZMANN'S LAW 2. Area Expansion For a black body which is perfect radiator energy emitted per unit time is given as 4 HEAT CAPACITY 10 WIEN'S DISPLACEMENT LAW $H = A \sigma T^A$ 6 TRIPLE POINT A is area, T is absolute temperature of body, σ is called The change in temperature of a substance, when a given Wavelength for which radiation energy For anisotropic solid = $\alpha_V = \alpha_{l_1} + \alpha_{l_2}$ Stefan Boltzmann's constant quantity of heat is absorbed or rejected is characterised by a is maximum decreases with increasing The temperature and pressure at which $\sigma = 5.67 \times 10^{-8} Wm^{-2}K^{-4}$ quantity called heat capacity. 3. Volume Expansion temperature. the fusion curve, the vaporisation curve O But if a body is surrounded by surroundings at (atm) and the sublimation curve meet and all temperature For perfect radiator net rate of heat $\lambda_m T = constant$ the three phases of a substance coexist ΔT radiated Value of constant (Wien's constant) is 2.9 × $H = \sigma A (T^4 - T_s^4)$ 10⁻³ m K. Specific heat capacity α_V is constant only at high temperature 40 → Fusion curve O This law is used to measure surface O Pyrex glass and invar has low This is unique value of heat absorbed or given off, to change O For body with emissivity e modified relation is BO → Sublimation curve temperature of celestial bodies like Alcohol has high volume expansion coefficient than mercury. unit mass of it by one unit temperature change. CO → Vaporisation curve $H = e \sigma A (T^4 - T_c^4)$ $0 < e \le 1$ stars, moon and sun. $\alpha_V = \frac{1}{T}$ for ideal gases $S = 1 \Delta Q$ $m - m \Delta T$ Pressure-temperature phase diagrams for water $(\alpha_V)_{\text{gases}} > (\alpha_V)_{\text{liquid}} > (\alpha_V)_{\text{solids}}$ 12 NEWTON'S LAW OF COOLING When a solid rod has its ends rigidly fixed, it results in thermal Molar specific heat stress in material which is proportional to temperature change. If the amount of substance is specified in terms of moles we define heat capacity per mole Thermal Stress = $Y \cdot \alpha_i \cdot \Delta T$ $C = \frac{S}{\mu} = \frac{1}{\mu} \left(\frac{\Delta Q}{\Delta T} \right) \text{ Jmol}^{-1} \text{K}^{-1}$ 13 GREENHOUSE EFFECT Rate of heat loss of a body For gases two molar specific heat capacities is directly proportional to The absorption of infrared waves by greenhouse Change in temperature $= k\Delta T$ difference of temperature Average gases such as CO2, methane (CH4) nitrous dude of body and surroundings. (N₂O) chloroflurocarbons (CF_xCI_x) and ozone (O₃). Molar specific heat Molar specific heat O This law holds for O Heat lost by a part at higher temperature is equal to $\Delta T = (T_{ov} - T_{s})$ Heating of atmosphere → More energy to earth capacity at constant capacity at constant heat gained by the part at lower temperature. small temperature → Warmer surface. Without Greenhouse effect volume Calorimetry means measurement of heat. difference only. $\log_e(T_2 - T_1) = -kt + C$ temperature of earth would have been -18°C A device in which heat measurement can be done is called a calorimeter. $C_P - C_V = R$ (for ideal gases)